

Module 5

Frequently seen intolerances in SIBO

- Histamine mainly will focus on this
- Oxalates
- Sulfites
- Salicylates

Balance the Terrain: Acid/Base

Phase 3 of the Bi-phasic Diet

Food intolerances

- Differ from food allergies in that the immune system is not activated
- Are more frequently seen in those with SIBO/SIFO
- Result in shrinking food choices for your sensitive patient
- Can be mistaken for SIBO sxs: bloating, abdominal pain, reflux
- Typically have some systemic sxs: rash, headache, swelling, fatigue, body or joint pain.

Very sensitive clients: "I react to everything"

Some general tips:

- Go slow- typically can tolerate single herbs/nutrients/probiotic strains better
- When totally reactive, start with mineral replacement, pH balance, and homeopathics
- They almost always have a "full bucket" that contribute to the problem
 Leaky gut
 - Poor detoxification
 - Immune dysregulation
 - Stealth infection: viral, parasitic
 - stress

The Terrain

The delicate balance of the GI tract is influenced by

- Bacterial diversity and numbers in the SI and LI
- pH of different areas
- Mucosal lining
 - Mucin
 - Interface of immune cells with microbiome
- Motility/Enteric nervous system

Histamine intolerance

Histamine is also found in foods- typically as a by product of protein degradation

- Anything that is allowed to "age" has a higher histamine potential:

- Cheese
- Fermented foods
- Cured meats
- Tinned fish/other tinned products
- Alcohol
- Left-overs, Bone broth, slow cooked meats (possibly)

4 types of Histamine receptors with various organ effects

- H1R smooth muscle, endothelium, CNS
 - Smooth muscle contraction, bronchoconstriction, mucous secretion, flushing, motion sickness, vomiting, headache, inc. TH1 response
- H2R incr. gastric acid secretion
- H3R CNS, Peripheral NS, decr. release of norepi, ACh, Serotonin,
 - CNS: arousal, circadian rhythm, incr anxiety and impulsivity
- H4R Basophils, Bone marrow, thymus mast cell, eosinophil and other WBC chemotaxis, chemokine production

Effects of Histamine on Organ systems

CNS	Causes headache though vasodilation, vertigo, nausea and vomiting, circadian rhythm, body temp control, memory
Cardiovascular	Vasodilation, tachycardia. Can provoke arrhythmias, hypertension/hypotension in anaphylaxis
Respiratory	Bronchoconstriction, mucous production, nasal congestion, sneezing, coryza
GI	Abdominal pain, increased acid secretion, edema, flatulence, diarrhea, inflammation
Skin	Itching, flushing, urticaria
Reproductive	Uterine cramping in dysmenorrhea, increased estrogen production
	Charles Lewis, Enteroimmunology, Psy Press 2013

GI conditions leadi	ng to high histamine
Damage to the enterocytes and villi	Celiac disease, infections, SIBO, secondary bile acids, intestinal dysbiosis
Enzyme inhibition	DAO inhibitors, alcohol, other bioamines (putrescine etc)
Polymorphisms	Genetic variants with lower MAO, DAO, HNMT, or other related enzyme pathway activity
Cofactor deficiencies	Most enzymes rely on cofactors, which may be deficient, especially with malabsorption
	Charles Lewis, Enteroimmunology, Psy Press 2013

Histamine

Normally not absorbed from the intestinal lumen due to 2 enterocyte enzymes

- DAO: diamine oxidase at enterocyte brush border. 9 times more active in the SI than HNMT. Both equally active in LI (histamine resulting from fermentation in the colon)
- Histamine N-methyl-transferase (HNMT) in enterocyte cytoplasm

Normally only larger amounts of histamine overcome the cell's ability to eliminate

Absorption of Histamine

- Absorption of histamine is increased by loss of DAO activity and polymorphysms in methylation pathways affecting HNMT, MAO, ALDH
- High levels of the biogenic amines cadaverine and putrescine have been shown to inhibit DAO and HNMT
- Caffeine and theobromine (chocolate), alcohol metabolites can inhibit the activity also
- SIBO damaging effect of H2 and CH4 on microvilli can cause loss of DAO

Histamine catabolism

3 separate pathways

Major pathway uses methylation step, then MAO, followed by an aldehyde dehydrogenase step

- requires B12, Folate (over-methylation will clog up downstream pathways)
- Then Mg, B6, Vit C
- Then B1
- 2 minor pathways:
 - DAO: requires B6, Magnesium, Copper
 - NAT: N-acetyl transferase uses B5

Histamine Clearance Support

Histamine Clearance

- DAO supplement with food
- B6, Magnesium, Copper
- Pantothenic acid 1000-2000mg
- B12, folinic acid SLOW!
- B1 100-200mg

Mast Cell stabilisation

- Vitamin C To bowel tolerance
- Quercetin 500-1000mg TID
- Albizia, Perrilla

Gut Binders – good for most

- Clinoptilolite
- · Bentonite clay
- Activated Charcoal
- Chlorella (can be more reactive)

Generally bind:

- ammonia, histamine
- mold toxins, endotoxins
- Toxins: pesticides, VOC, heavy metals (biofilm)
- Gas!

NOTE: Binders can be constipating

Oxalates

- Component of plants and endogenously made
- Also made by molds: Aspergillus, candida (?)
- Form crystals kidney (stones), joints,
- High oxalates can be due to a loss of Oxalobacter formigenes in the GI tract
- Usually binds to dietary calcium to be eliminated

DOCT

Oxalate sensitivity symptoms

- Kidney stones
- Joint pain and body pain
- Fibromyalgia
- Burning urethra, bladder, vulva
- Vulvodynia
- Burning with bowel movements

- ,		0.7	7 - 7.0		5.6	L	-	- 69-	
Glycolic		16	- 117		82	L			
Oxalic		6.0	- 101		139				
irst 2 ma	arkers indica	ate endogeno	ous/ger	nomic	contri	butions			
		5	, 5						

<section-header><text><text><text><list-item><list-item><list-item><table-row><table-row><table-row><table-row>

Sulfur sensitivity - Causes

- High hydrogen sulfide from SRB
- Sulfur clearing pathway issues (often homozygous CBS) producing too many sulfites and ammonia
- Heavy metal toxicity (affinity of sulfites to HM)
- Sxs often caused by mast cell degranulation from sulfites in preservatives
- Some patients are sensitive to thiols (sulfur bonded to hydrogen)– in foods like kale, supplements NAC, cysteine, GSH

Symptoms of sulfur sensitivity

- Extreme sensitivity to alcohol
- Flushing
- Headaches
- Swelling
- Ammonia smell
- Burning pain/body pain (H₂S)
- Bladder pain (H₂S)
- Weight gain
- Feeling "toxic"
- Gas, bloating

Support for sulfite sensitivity

- Low sulfur diet for 4-6 weeks (see handout)
- Molybdenum- cofactor for sulfite oxidase
- Selenium, Vit D cofactors for glutathione peroxidase reduces sulfite induced mast cell degranulation
- SAMe and other methylation support (possibly)

Salicylate sensitivity

- Natural plant substances which help the plant defend itself against bacteria, fungi and other pests.
- Salicylates are toxic to everyone in very high doses, but with a salicylate sensitivity the threshold is much lower before a reaction occurs
- Salicylates are chemically very similar to the man-made chemical, acetylsalicylic acid, a key ingredient in aspirin and other pain medications
- "Non-specific antigen-induced pseudoallergic hypersensitivity"

Salicylate sensitivity -causes

- Detoxification impairments
- Metabolic acidosis
- theory that plants are upregulating salicylates due to climate change (stress)
- Dysbiosis (?)

Salicylate sensitivity symptoms

- Nausea, stomach pain, diarrhea
- Headaches
- Swelling of hands, feet, face, lips
- Tinnitus
- Itching and rashes
- Asthma or breathing difficulty
- Persistent cough
- Fatigue
- Sinus congestion
- Dizziness

Not just in foods.....

- Herbal products! Most will contain salicylates. Especially high: curcumin
- Medications: most NSAIDs
- Cosmetics, fragrances, shampoo
- Cleaning products
- Air fresheners
- Breath mints, lozenges, gums

Salicylate metabolism

- Readily absorbed in the SI
- Bind to albumin in plasma
- Phase 2 detox: Glycine (primary) or glucuronic acid (secondary) conjugation
- · Unbound salicylates excreted via kidneys
- Marked dependence on urinary pH 80% more salicylates excreted when urine pH changes from 5 to 8

Support for salicylate excretion

Support for phase 2 clearance

- Glycine conjugation: Glycine 1000-1500mg daily
- Glucuronidation: Calcium d- glucarate 1500mg daily

Support for kidney clearance: Alkalising minerals, trace minerals

Acidogenic factors

- Modern diet also SIBO diet CAN be
- High intensity exercise
- Stress
- Inflammation
- Low bicarbonate (diarrhea, etc)
- Mitochondrial dysfunction
- Ageing (declining kidney function)
- Respiratory or renal disease

Ref. by JACOBI, Nirale		Post	ad 21/01/2016 07:47 PM		
Destradiol	82	pmol/L	(< 150)	-	
Testosterone free Testosterone (calc) Dex Hormone Binding Globulin	13 169 60	nmol/L pmol/L nmol/L	(5.0-25.0) (150-990) (13-71)	Patho	
SERIM CHERCITYF - RANDOM Boolium Potassium Chioride Biosrbonte Other Anions	143 4.1 104 27 16	mmol/L mmol/L mmol/L mmol/L	(1.37 - 1.47) (3, 5 - 5, 0) (96 - 1.09) (25 - 33) (4 - 17)	logy Re	
Glucose	4.5	mmol/L	random (3.0-7.7)	p	
Urea Creatinine eGFN	5.9 76 2 90	mmol/L umol/L ml/min	(3.0-8.5) (60-140) (0ver 50)	ă	

Fundamental DescriptionPH may influence species composition and growth rate of gut flora The microbiome produces acids via fermentation: SCFA: butyrate, acetate, propionate. An acidic gut pH can decrease the production of SCFA Lactate producing strains L- lactate- converted quickly to pyruvate D- lactate - can accumulate and will reduce gut pH, can affect leaky gut, cause systemic sxs (this is a controversial topic)

Getting out of the corner....

- Check urinary pH 3-4 hours after meals. NOT first morning void. I recommend 2 x daily for a few days to get an average.
- Alkalising if AG>12 and/or urinary pH is < 6.7
- Why NOT use Bicarb of soda? Only alkalises the gut, no real systemic effects
- Use a good alkalising mineral product.

Phase 3 – increasing fermentable carbohydrates

- Sweet Potato
- Brown Rice, Quinoa
- Buckwheat
- Canned brown lentils, yellow lentils
- Maple syrup

Final Tips Retest when first relapse occurs and after active treatment to establish treatment efficacy. Then you have a go-to treatment plan for subsequent relapses if necessary Our understanding of SIBO is evolving - keep up to date Relax....it gets easier

